Name: _

Math 230, Final Summer 2012 August 8, 2012

Prob.	Points	Score
1	10	
2	15	
3	5	
4	5	
5	5	
6	10	
7	10	
8	5	
9	10	
10	10	
11	10	
12	10	
13	15	
Total	120	

Instrctions:

- You have 120 minutes to complete the exam.
- You may not use books, notes or calculators.
- Read each question carefully.
- Write legibly and show your work. Feel free to use both sides of each page.
- Ask for additional paper if you need.
- This exam has 13 pages and 13 problems. Please make sure that all pages are included.

GOOD LUCK !

1. (10 points.) Determine whether the statements below are true or false and circle your answer.

(a) If $\overrightarrow{r}(t)$ is a differentiable vector function then $\frac{d}{dt}|\overrightarrow{r}(t)| = |\overrightarrow{r}'(t)|$.

True False

(b) For a function f(x,y) if $\lim_{x\to 0} f(x,0) = \lim_{y\to 0} f(0,y) = 0$ then $\lim_{(x,y)\to (0,0)} f(x,y) = 0$.

True False

(c) If for f(x, y), the second order partial derivatives all exist and are continuous then $f_{xy}(x, y) = f_{yx}(x, y)$.

True False

(d) If $\overrightarrow{w} \parallel \overrightarrow{v}$, then $\overrightarrow{v} \times (\overrightarrow{u} + \overrightarrow{w}) = \overrightarrow{v} \times \overrightarrow{u}$.

True False

(e) If f(x, y) has continuous second order partial derivatives at (a, b), also $\nabla f(a, b) = \langle 0, 0 \rangle$ and $f_{xx}(a, b) f_{yy}(a, b) < [f_{xy}(a, b)]^2$, then (a, b) is a saddle point of f.

False

True

 $\mathbf{2}$

2. (15 points) Consider the following function.

$$f(x,y) = \begin{cases} \frac{x^2 y^2}{(x^2+y^2)[(x-1)^2+y^2]} & (x,y) \neq (0,0) \text{ or } (1,0) \\ 0 & (x,y) = (0,0) \\ 1 & (x,y) = (1,0) \end{cases}$$

(a) Find the limit $\lim_{(x,y)\to(0,0)} f(x,y)$.

(b) Evaluate $\lim_{(x,y)\to(1,0)} f(x,y)$.

(c) Find all the points where f is continuous.

3. (5 points) Find an equation for the tangent plane to the surface given by the equation

 $e^{xy+z}\cos(\ln(z)) = 1$

at the point (1, -1, 1).

4. (5 points) Find and sketch the domain of the following function

$$f(x,y) = \frac{\ln(x^2 + y^2 - 1)}{\sqrt{x+y}}$$

(5 points) Write down equations for two level curves of the following function and sketch them, (clearly label the intercepts)

$$f(x,y) = e^{2x^2 - y^2}$$

6. (10 points.) Consider the following lines

$$L_1 : \overrightarrow{r}(t) = \langle 1, -1, 1 \rangle + t \langle 2, 1, -3 \rangle$$
$$L_2 : \overrightarrow{q}(s) = \langle 0, 0, 0 \rangle + s \langle 1, -2, 1 \rangle$$

(a) Determine whether they are intersecting, parallel or skew.

(b) If they are skew or parallel find the distance between them, if they are intersecting find the point of intersection.

- 7. (10 points.) A cannon is fired from a hill top which is 200 meters above sea level, at an angle of 30° with the horizontal and an initial speed of 500 m/s.
 - (a) Find the acceleration, velocity, and position as vector functions of time using your choice of coordinates. (There is no air drag and acceleration due to gravity $g = 10m/s^2$)

(b) At what time does the cannon ball hit the ground which is at sea level?

8. (5 points) Find the tangent lines to the curve

$$x^2 + y^2 + 2xy - x + y = 0$$

at the points (1,0) and (0,-1).

9. (10 points) Consider the function

$$F(x, y, z) = \begin{cases} \frac{x^3}{x^2 + y^2 + z^2} & (x, y, z) \neq (0, 0, 0) \\ 0 & (x, y) = (0, 0, 0) \end{cases}$$

(a) Find the directional derivative $D_{\overrightarrow{u}}F(-1,1,0)$, where $\overrightarrow{u} = \langle \frac{3}{7}, -\frac{2}{7}, \frac{6}{7} \rangle$ is a unit vector.

(b) Using the limit definition calculate $\frac{\partial F}{\partial x}(0,0,0)$.

10. (10 points) Calculate the linear approximation of the function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at (3, 2, 6), and use it to estimate $\sqrt{(3.02)^2 + (1.97)^2 + (5.99)^2}$.

11. (10 points) Consider the following functions

$$f(x,y) = xe^{xy} \quad x(s,t) \quad y(s,t)$$

Assume x(0,1) = 2, y(0,1) = 1, $\frac{\partial x}{\partial t}(0,1) = 3$ and $\frac{\partial y}{\partial t}(0,1) = -1$. Compute $\frac{\partial g}{\partial t}(0,1)$ where g(s,t) = f(x(s,t), y(s,t))

12. (10 points) Find and determine the nature of critical points of the function

 $x^2 + y^3 - 6xy + 3x + 6y$

13. (15 points) Find the maximum and minimum of the function $f(x, y) = x^3 + y^2 - 6x^2$, in the closed and bounded elliptic region $D = \{(x, y) \mid 3x^2 + y^2 \leq 3\}.$